Lytic bony lesions on 18F-FDG PET-CT versus 99mTc MDP bone scan

Nida Rasheed, Mairah Razi
Department of Nuclear Medicine, Shaukat Khanum Memorial Cancer Hospital and Research Center, Lahore

Correspondence: Aamna Hassan. e-mail: aamnah@skm.org.pk
ORCID ID: 0000-0003-0026-0729

Abstract
With rising incidence of breast carcinoma in Asian population, staging workup remains a crucial entity in disease management and outcome. Bone scintigraphy for detection of osteoblastic metastasis has remained a convenient choice. However, in the presence of underlying lytic bony lesions sensitivity of 99mTc-MDP bone scan is questionable when compared to 18F-FDG PET-CT scan. We present a case that showed better sensitivity of 18F-FDG PET-CT for picking up early lytic lesions for staging breast cancer.

Keywords: breast carcinoma, bone scan, 18F-FDG PET-CT.

DOI: https://doi.org/10.47391/JPMA.23-76

A 39-year-old female with left breast invasive ductal carcinoma underwent bone scan (Figure 1 A&B) which demonstrated low degree of focal uptake in manubrium sterni, right humeral and femoral shafts suspicious for metastases. Staging CT scan (Figure 1 C&D) showed ill-defined osteolytic lesion in manubrium sterni and left sacral ala. 18F-FDG PET-CT (Figure 1 E) done for further evaluation which showed multiple hypermetabolic osteolytic lesions in comparison to bone scan. Follow-up bone scan (Figure 2 A&B) after 7 months showed multiple new lesions in axial and appendicular skeleton which corresponds to sclerotic morphology of already existing lytic lesions upon subsequent CT scan (Figure 2 C-F). This represents flare phenomena suggestive of treatment response.

Osseous metastases in breast cancer can be osteolytic or osteoblastic. The literature is equivocal about whether FDG PET-CT or conventional imaging is superior for detection of bone metastases.1-3 Bone scan demonstrates uptake in region of increased osteoblastic activity and blood perfusion.4 Before reactive osteoblastic response to invading tumour cells, predominantly lytic lesions will be missed on bone scintigraphy.
FDG PET-CT demonstrates increased glucose metabolism in bone metastases regardless of osteolytic or osteoblastic response, increasing the sensitivity. PET-CT is superior to skeletal scintigraphy in terms of spatial resolution, with acquisition of tomographic images. It also gives sensitive information about treatment response and disease prognosis. Bone scan and CT are commonly the first step in staging for breast cancer. FDG PET-CT should be advised in high-risk patients, for further evaluation of indeterminate osseous findings, which could lead to changes in pharmacotherapy and help prevent adverse skeletal-related events.

References