Respected Editor, Beta thalassaemia is an autosomal recessive disorder that leads to abnormal production of functional adult haemoglobin because of either inadequate or absent production of the B globin chain (β+/β0). Transfusion-dependent thalassemia (TDT) is a rare and most severe form requiring life-long blood transfusions. To mitigate the effects of TDT, life-long blood transfusions every 2-5 weeks are required, which can elicit transfusion-based reactions and lead to an iron overload state, which can further cause widespread organ damage despite the use of iron chelation therapy.

Curative treatment for beta-thalassemia is by performing allogeneic haematopoietic stem cell (H.S.C.) transplantation with H.L.A matching donors. Allogenic H.S.C. transplantation is associated with an increased risk of morbidity and mortality; therefore, autologous H.S.C. transplantation with genetic modification is considered a better option. Betibeglogene autotemcel is a one-off administration gene addition treatment for TDT that offers the prospect of achieving transfusion independence.

Recently, the US FDA approved the use of Beti-cel for both adult and paediatric populations with TDT in late August 2022 and hailed it as the first cell-based gene therapy for Beta Thalassemia. Betibeglogene autotemcel recruits a lentiviral vector to add a modified β A-T87Q globin gene into autologous CD34+ haematopoietic stem cells. Patients must undergo a complete myeloablative conditioning regimen with Busulfan before Beti-cel infusion. Several phase 1 and 2 studies have concluded that Beti-cel increased Haemoglobin A levels and, therefore, achieved transfusion independence in over 90% of the patients who were given this gene therapy. Patients who achieve transfusion independence with Beti-cel are reported to have normal levels of Hepcidin post a year and two. Beti-cel is not recommended for lactating women. Cryopreservation of ova and semen is recommended prior to the treatment.

A study on the cost-effectiveness of Beti-cel has reported that it is much more cost-effective than the current standard of care (SoC) needed for TDT. Beti-cel also improved the quality of life (QoL) by a gain of 3.8 and 6.9 Life Years’ (L.Y.s) and Quality Adjusted Life Years (QALYs), respectively.

While Beti-cel possibly provides a promising cure for TDT, more extensive studies need to be conducted to establish the treatment’s long-term safety and efficacy. Further research is required to identify the risk of insertional oncogenesis in patients receiving this therapy. Careful consideration must be made for the third-world countries as gene therapy is supremely expensive, and specialized treatment for its implementation is scarce in such parts of the world.

Acknowledgement: We are immensely grateful to Dr. Fatima Asif Qureshi (MBBS) and Dr. Zainab Abbas (MBBS) for their review of an earlier version of the manuscript, although any errors are our own and should not tarnish the reputations of these esteemed persons.

Disclaimer: None.

Conflict of interest: None.

Funding disclosure: None.

DOI: https://doi.org/10.47391/JPMA.9532

Submission completion date: 21-03-2023

Acceptance date: 27-05-2023

References


Betibeglogene Autotemcel; A new hope for transfusion dependent beta-thalassaemia
Hiba Tariq Wally, Muhammad Hassan Zulfi, Elahi Sana Jilani

Department of Orthopaedic Surgery, Jinnah Postgraduate Medical Centre, Karachi, Pakistan.
Correspondence: Hiba Tariq Wally. e-mail: hiba.wally@gmail.com
ORCID ID. 0000-0001-8765-4776